隨著材料領域的擴張,人們對于材料的功能性需求更為嚴苛,迫切需要在交通運輸、建筑材料、能量存儲與轉化等領域應用性質更加優良的材料出現,石墨烯以優異的聲、光、熱、電、力等性質成為各新型材料領域追求的目標,作為前驅體的GO以其靈活的物理化學性質、可規模化制備的特點更成為應用基礎研究的熱電。雖然GO具有諸多特性,但是由于范德華作用以及π-π作用等強相互作用力,使GO之間很容易在不同體系中發生團聚,其在納米尺度上表現的優異性能隨著GO片層的聚集***的降低直至消失,極大地阻礙了GO的進一步應用。靜電作用的強弱與氧化石墨烯表面官能團產生的負電荷相關。多層氧化石墨什么價格
Su等人28利用氫碘酸和抗壞血酸對PET基底上的多層氧化石墨烯薄膜進行化學還原,得到30nm厚的RGO薄膜,并測試了其滲透性能。實驗發現,對He原子和水分子完全不能透過。而厚度超過100 nm的RGO薄膜對幾乎所有氣體、液體和腐蝕性化學試劑(如HF)是高度不可滲透的。特殊的阻隔性能歸因于石墨烯層壓板的高度石墨化和在還原過程中幾乎沒有結構損壞。與此結果相反,Liu等人29已經證明了通過HI蒸氣和水輔助分層制備**式超薄rGO膜的簡便且可重復的方法,利用rGO膜的毛細管力和疏水性,通過水實現**終的分層。采用真空抽濾在微孔濾膜基底上制備厚度低至20nm的**式rGO薄膜。多層氧化石墨什么價格隨著含氧基團的去除,氧化石墨烯(GO)在可見光波段的的光吸收率迅速上升。
當前社會的快速發展造成了嚴重的重金屬離子污染,重金屬離子毒性大、分布廣、難降解,一旦進入生態環境,嚴重威脅人類的生命健康。目前,含重金屬離子廢水的處理方法主要有化學沉淀法、膜分離法、離子交換法、吸附法等等。而使用納米材料吸附重金屬離子成為當前科研人員的研究熱點。相對活性炭、碳納米管等碳基吸附材料,氧化石墨烯的比表面積更大,表面官能團(如羧基、環氧基、羥基等)更為豐富,具有很好的親水性,可以與金屬離子作用富集分離水相中的金屬離子;同時,氧化石墨烯片層可交聯極性小分子或聚合物制備出氧化石墨烯納米復合材料,吸附特性更加優異。
多層氧化石墨烯(GO)膜在不同pH水平下去除水中有機物質的系統性能評價和機理研究。該研究采用逐層組裝法制備了PAH/GO雙層膜,對典型單價離子(Na+,Cl-)和多價離子(SO42-,Mg2+)以及有機染料(亞甲藍MB,羅丹明R-WT)和藥物和個人護理品(三氯生TCS,三氯二苯脲TCC)在反滲透膜系統中通過GO膜的行為進行研究。結果發現,在pH=7時,無論其電荷、尺寸或疏水性質如何,GO膜能夠高效去除多價陽離子/陰離子和有機物,但對于單價離子的去除率較低。傳統的納濾膜通常帶負電,且只能去除帶有負電荷的多價離子和有機物。隨著pH的變化,GO膜的關鍵性質(例如電荷,層間距)發生***變化,導致不同的pH依賴性界面現象和分離機制,一些有機物(例如三氯二苯脲)的分子形狀由于這種有機物與GO膜的碳表面的遷移性和π-π相互作用而極大地影響了它們的去除。氧化石墨烯表面的-OH和-COOH等官能團含有孤對電子。
還原氧化石墨烯(RGO)在邊緣處和面內缺陷處具有豐富的分子結合位點,使其成為一種很有希望的電化學傳感器材料。結合原位還原技術,有很多研究使用諸如噴涂、旋涂等基于溶液的技術手段,利用氧化石墨烯(GO)在不同基底上制造出具備石墨烯相關性質的器件,以期在一些場合替代CVD制備的石墨烯。結構決定性質。氧化石墨烯(GO)的能級結構由sp3雜化和sp2雜化的相對比例決定[6],調節含氧基團相對含量可以實現氧化石墨烯(GO)從絕緣體到半導體再到半金屬性質的轉換氧化石墨的親水性好,易于分散到水泥基復合材料中。生產氧化石墨有哪些
氧化石墨烯的表面官能團與水中的金屬離子反應形成復雜的絡合物。多層氧化石墨什么價格
近年來研究者發現石墨烯由于它獨特的零帶隙結構,對所有波段的光都無選擇性的吸收,且具有超快的恢復時間和較高的損傷閾值。因此利用石墨烯獨特的非線性可飽和吸收特性將其制作成可飽和吸收體應用于調Q摻鉺光纖激光器、被動鎖模光纖激光器已經成為超快脈沖激光器研究領域的熱點。2009年,Bao等[82]人使用單層石墨烯作為鎖模光纖激光器的可飽和吸收體首先實現了通信波段的超短孤子脈沖輸出,脈沖寬度達到了756fs。他們證實了由于泡利阻塞原理,零帶隙材料石墨烯在強激光激發下可以容易的實現可飽和吸收,而且這種可飽和吸收是與頻率不相關的,即石墨烯作為可飽和吸收體可實現對所有波長的光都有可飽和吸收作用。多層氧化石墨什么價格