由于較低的毒性和良好的生物相容性,石墨烯材料在細胞成像方面**了一股研究熱潮。石墨烯及其衍生物本身具有特殊的平面結構和光學性質,或者經過熒光染料分子標記之后,可用于體外細胞與***光學成像[63-66],使其在**顯像和***方面具有很大的應用前景。Dai課題組[67]***利用納米尺寸的聚乙二醇功能化氧化石墨烯(GO-PEG)的近紅外發光性質用于細胞成像。他們將抗體利妥昔單抗(anti-CD20)與納米GO-PEG共價結合形成納米GO-PEG-anti-CD20,然后將納米GO-PEG和納米GO-PEG-anti-CD20與B細胞或T細胞在培養液中4℃培養1h,培養液中納米GO-PEG的濃度大約為0.7mg/ml,結果發現B細胞淋巴瘤具有強熒光,而T淋巴母細胞的熒光強度則很弱。另外,通過對GO進行80℃熱處理17天后,再利用200W的超聲對GO溶液處理2h,得到的GO在紫外光(266–340nm)的照射下顯示出藍色熒光。關于GO與水泥基復合材料的作用機制,研究者也有不同的觀點,目前仍沒有定論。生產氧化石墨使用方法
所采用的石墨原料片徑大小、純度高低等以及合成GO的方法不同,因此導致所合成出來的GO片的大小、片層厚度、氧化程度(含氧量)、表面電荷和表面所帶官能團等不同。GO的生物毒性除了有濃度依賴性,還會因GO原料的不同而呈現出毒性數據的多樣性,甚至結論相互矛盾[2-9]。此外,GO可能與毒性測試中的試劑相互作用,從而影響細胞活性試驗數據的有效性,使其產生假陽性結果。如:Macosko與其合作者[10]的研究發現,在細胞活性試驗中利用四甲基偶氮唑鹽(MTT)試劑與GO作用,GO的存在可以減少藍色產物的形成。因為在活細胞中,當MTT減少時就說明有同一種顏色產物的生成。因此,基于MTT法試驗未能體現出GO的細胞毒性。但是他們利用另一種水溶性的四唑基試劑——WST-8(臺酚藍除外),就能對活細胞和死細胞的數量進行精確的評估。生產氧化石墨生產廠家GO的生物毒性除了有濃度依賴性,還會因GO原料的不同而呈現出毒性數據的多樣性。
在GO還原成RGO的過程中,材料的導電性、禁帶特性和折射率都會發生連續變化,形成獨特而優異的可調諧型新材料。2014年,澳大利亞微光子學中心賈寶華教授領導的科研小組***發現在用激光直寫氧化石墨烯薄膜形成微納米結構的過程中,材料的非線性可以實現激光功率可控的動態調諧。與傳統的非線性材料相比,氧化石墨烯的三階非線性高出了整整1000倍,隨著氧化石墨烯中的氧成分逐漸減少,而非線性也呈現出被動態調諧的豐富變化。不但材料的非線性系數的大小產生改變,其非線性吸收和折射率也發生變化,并且,這種豐富的非線性特性完全可以實現動態操控。
配體交換作用即:氧化石墨烯上原有的配位體被溶液中的金屬離子所取代,并以配位鍵的形式生成不溶于水的配合物,**終通過簡單的過濾即可從溶液中去除。Tang等47對Fe與GO(質量比為1:7.5)復合及Fe與Mn(摩爾比為3∶1)復合的氧化石墨烯/鐵-錳復合材料(GO/Fe-Mn)進行了吸附研究,通過一系列的實驗表明,氧化石墨烯對Hg2+的吸附機理主要是配體交換作用,其比較大吸附量達到32.9mg/g。Hg2+可在水環境中形成Hg(OH)2,與鐵錳氧化物中的活性點位(如-OH)發生配體交換作用,從而將Hg(OH)2固定在氧化石墨烯/鐵-錳復合材料上,達到去除水環境中Hg2+的目的。氧化石墨烯經一定功能化處理后可發揮更大的性能優勢,例如大比表面積、高敏感度和高選擇性等,這些特性對于氧化石墨烯作為吸附劑吸附水環境中的金屬離子有著重要的作用。靜電作用的強弱與氧化石墨烯表面官能團產生的負電荷相關。
氧化石墨烯(GO)是一種兩親性材料,在生理條件中一般帶有負電荷,通過對GO的修飾可以改變電荷的大小,甚至使其帶上正電荷,如利用聚合物或樹枝狀大分子等聚陽離子試劑。在細胞中,GO可能會與疏水性的、帶正電荷或帶負電荷的物質進行相互作用,如細胞膜、蛋白質和核酸等,因此會誘導GO產生毒性。因此在本節中,我們主要探討GO在細胞(即體外)和體內試驗中產生已知的毒性效應,以及產生毒性的可能原因。石墨烯材料的結構特點主要由三個參數決定:(a)層數、(b)橫向尺寸和(c)化學組成即碳氧比例)。GO具有獨特的電子結構性能,可以通過熒光能量共振轉移和非輻射偶極-偶極相互作用能有效猝滅熒光體。附近哪里有氧化石墨導電
氧化石墨是一種碳、氧數量之比介于2.1到2.9之間黃色固體,并仍然保留石墨的層狀結構,但結構更復雜。生產氧化石墨使用方法
氧化應激是指體內氧化與抗氧化作用失衡,傾向于氧化,導致中性粒細胞炎性浸潤,蛋白酶分泌增加,產生大量氧化中間產物,即活性氧。大量的實驗研究已經確認細胞經不同濃度的GO處理后,都會增加細胞中活性氧的量。而活性氧的量可以通過商業化的無色染料染色后利用流式細胞儀或熒光顯微鏡檢測到。氧化應激是由自由基在體內產生的一種負面作用,并被認為是導致衰老和疾病的一個重要因素。氧化應激反應不僅與GO的濃度[17,18]有關,還與GO的氧化程度[19]有關。如將蠕蟲分別置于10μg/ml和20μg/ml的PLL-PEG修飾的GO溶液中,GO會引起蠕蟲細胞內活性氧的積累,其活性氧分別增加59.2%和75.3%。生產氧化石墨使用方法