氧化石墨烯(GO)表面有羥基、羧基、環(huán)氧基、羰基等親水性的活性基團,且片層間距較大,使得氧化石墨烯具有超大比表面積和***的離子交換能力。GO的結構與水通蛋白相類似,而蛋白質(zhì)本身具有優(yōu)異的離子識別功能,由此可推斷氧化石墨烯在分離、過濾及仿生離子傳輸?shù)阮I域可能具有潛在的應用價值1-3。GO經(jīng)過超聲可以穩(wěn)定地分散在水中,再通過傳統(tǒng)成膜方法如旋涂、滴涂和真空抽濾等處理后,GO微片可呈現(xiàn)肉眼可見的層狀薄膜堆疊,在薄膜的層與層之間形成具有選擇性的二維納米通道。除此之外,GO由于片層間存在較強的氫鍵,力學性能優(yōu)異,易脫離基底而**存在。基于GO薄膜制備方法簡單、成本低、高通透性和高選擇性等優(yōu)點,其在水凈化領域具有廣闊的應用空間。氧化石墨烯(GO)是印刷電子、催化、儲能、分離膜、生物醫(yī)學和復合材料的理想材料。河北綠色氧化石墨
由于GO表面具有較高的親和力,蛋白質(zhì)可以吸附在GO表面,因此在生物液體中可以通過蛋白質(zhì)來調(diào)節(jié)GO與細胞膜的相互作用。如,血液中存在著大量的血清蛋白,可能會潛在的影響GO的毒性。Ge與其合作者[16]利用電子顯微鏡技術就觀察到牛血清蛋白可以降低GO對細胞膜的滲透性,抑制了GO對細胞膜的破壞,同時降低了GO的細胞毒性。基于分子動力學研究分析,他們推斷可能是由于GO-蛋白質(zhì)之間的作用削弱了GO-磷脂之間的相互作用。與此同時,GO對人血清蛋白的影響也被其他科研工作者所發(fā)現(xiàn),特別是他們觀察到了GO可以抑制人血清蛋白與膽紅素之間的作用。因此,GO與血清蛋白之間是相互影響的。綠色氧化石墨性能石墨、碳纖維、碳納米管和GO可以作為熒光受體。
氧化石墨烯(GO)的比表面積很大,而厚度只有幾納米,具有兩親性,表面的各種官能團使其可與生物分子直接相互作用,易于化學修飾,同時具有良好的生物相容性,超薄的GO納米片很容易組裝成紙片或直接在基材上進行加工。另外,GO具有獨特的電子結構性能,可以通過熒光能量共振轉移和非輻射偶極-偶極相互作用能有效猝滅熒光體(染料分子、量子點及上轉換納米材料)的熒光。這些特點都使GO成為制作傳感器極好的基本材料[74-76]。Arben的研究中發(fā)現(xiàn),將CdSe/ZnS量子點作為熒光供體,石墨、碳纖維、碳納米管和GO作為熒光受體,以上幾種碳材料對CdSe/ZnS量子點的熒光淬滅效率分別為66±17%、74±7%、71±1%和97±1%,因此與其他碳材料相比,GO具有更好的熒光猝滅效果[77]。
使得*在單層中排列的水蒸氣可以滲透通過納米通道。通過在GO納米片之間夾入適當尺寸的間隔物來調(diào)節(jié)GO間距,可以制造廣譜的GO膜,每個膜能夠精確地分離特定尺寸范圍內(nèi)的目標離子和分子。水合作用力使得溶液中氧化石墨烯片層間隙的距離增大到1.3nm,真正有效、可自由通過的孔道尺寸為0.9nm,計算出水合半徑小于0.45nm的物質(zhì)可以通過氧化石墨烯膜片,而水合半徑大于0.45nm的物質(zhì)被截留,如圖8.4所示。例如,脫鹽要求GO的層間距小于0.7nm,以從水中篩分水合Na+(水合半徑為0.36nm)。通過部分還原GO以減小水合官能團的尺寸或通過將堆疊的GO納米片與小尺寸分子共價鍵合以克服水合力,可以獲得這種小間距。與此相反,如果要擴大GO的層間距至1~2nm,可在GO納米片之間插入剛性較大的化學基團或聚合物鏈(例如聚電解質(zhì)),從而使GO膜成為水凈化、廢水回收、制藥和燃料分離等應用的理想選擇。如果使用更大尺寸的納米顆粒或納米纖維作為插層物,可以制備出間距超過2nm的GO膜,以用于生物醫(yī)學應用(例如人工腎和透析),這些應用需要大面積預分離生物分子和小廢物分子。石墨烯微片的缺陷有時使其無法滿足某些復合材料在抗靜電或導電、隔熱或導熱等方面的特殊要求。
太赫茲技術可用于醫(yī)學診斷與成像、反恐安全檢查、通信雷達、射電天文等領域,將對技術創(chuàng)新、國民經(jīng)濟發(fā)展以及**等領域產(chǎn)生深遠的影響。作為極具發(fā)展?jié)摿Φ男录夹g,2004年,美國**將THz科技評為“改變未來世界的**技術”之一,而日本于2005年1月8日更是將THz技術列為“國家支柱**重點戰(zhàn)略目標”**,舉全國之力進行研發(fā)。傳統(tǒng)的寬帶THz波可以通過光整流、光電導天線、激光氣體等離子體等方法產(chǎn)生,窄帶THz波可以通過太赫茲激光器、光學混頻、加速電子、光參量轉換等方法產(chǎn)生。同時具有良好的生物相容性,超薄的GO納米片很容易組裝成紙片或直接在基材上進行加工。常規(guī)氧化石墨資料
靜電作用的強弱與氧化石墨烯表面官能團產(chǎn)生的負電荷相關。河北綠色氧化石墨
工業(yè)化和城市化導致天然地表水體中的有毒化學品排放,其中包括酚類、油污、***、農(nóng)藥和腐植酸等有機物,這些污染物在制藥,石化,染料,農(nóng)藥等行業(yè)的廢水中***檢測到。許多研究集中在從水溶液中有效去除這些有毒污染物,如光催化,吸附和電解54-57。在這些方法中,由于吸附技術低成本,高效率和易于操作,遠遠優(yōu)于其他技術。與傳統(tǒng)的膜材料不同,GO作為碳質(zhì)材料與有機分子的相互作用機理差異很大。新的界面作用可在GO膜內(nèi)引入獨特的傳輸機制,導致更有效地從水中去除有機污染物。石墨烯和GO對有機物的吸附機理的研究表明,疏水作用、π-π鍵交互作用、氫鍵、共價鍵和靜電相互作用會影響石墨烯和GO對有機物的吸附能力。河北綠色氧化石墨