除了可以將太陽能轉換為熱能存儲之外,石墨烯相變材料也可以將電能轉換為熱能存儲。Wang[65]等人通過冰模板法制備了石墨烯納米片(GNP)氣凝膠,然后與石蠟復合得到相變復合材料,具有高導熱性、較好的形狀穩定性和熱穩定性,當GNP含量為4.1wt%時熱導率可達到1.42Wm-11C1。此外,當電壓為5V時,流經樣品的電流約為1.18A,此時溫度迅速升高,證實了其出色的電熱轉換能力。Li[66】等人將氣相擴散法和溶膠-凝膠法相結合,通過超臨界C02干燥和熱退火過程,制備了具有各向異性網絡的三維石墨烯氣凝膠,導熱率和導電率分別高達1.71士0.2Wnr11C1和341.3Snr1。其相變復合材料在施加1?3V的電壓時,電-熱轉換效率比較高可以達到85%。這項工作能夠為開發智能的電-熱轉換及存儲系統提供理論基礎,并證明了石墨烯相變復合材料在電子設備、太陽能存儲利用、熱管理系統等領域具備的潛力。石墨烯型號為SE1231、SE1232、SE1233、SE1234。過濾氧化石墨烯措施
隨著電子設備的功率密度越來越高,其熱管理己成為至關重要的問題。近年來,由于具有優異的導熱性和良好的機械強度,石墨烯薄膜被認為是用于電子器件中散熱材料(HDM)、熱界面材料(TIM)的理想選擇。0〇1^[5(^等人提出了一種改進的輥涂方法制備石墨薄膜,然后通過機械壓制、石墨化處理得到了大尺寸、高密度的高導熱石墨烯薄膜,由于具有高度有序、逐層堆疊的微觀結構以及幾乎沒有面內缺陷的石墨烯片,其面內導熱率比較高可達826.0Wnr1K4,并具有良好的熱穩定性和優異的柔韌性。由于其優異的性能,這種石墨烯薄膜在LED封裝中表現出出色的熱管理能力,并且能夠在高溫環境下工作,具有良好的應用前景。過濾氧化石墨烯措施石墨烯具有良好的導電性能,能夠與涂料中的鋅粉產生協同效應。
石墨經過氧化處理后得到氧化石墨,氧化石墨仍保持石墨的層狀結構,但在每一層的石墨烯單片上引入了許多氧基功能團。這些氧基功能團的引入使得單一的石墨烯結構變得非常復雜。鑒于氧化石墨烯在石墨烯材料領域中的地位,許多科學家試圖對氧化石墨烯的結構進行詳細和準確的描述,以便有利于石墨烯材料的進一步研究,雖然已經利用了計算機模擬、拉曼光譜,核磁共振等手段對其結構進行分析,但由于種種原因(不同的制備方法,實驗條件的差異以及不同的石墨來源對氧化石墨烯的結構都有一定的影響),氧化石墨烯的精確結構還無法得到確定。大家普遍接受的結構模型是在氧化石墨烯單片上隨機分布著羥基和環氧基,而在單片的邊緣則引入了羧基和羰基。**近的理論分析表明氧化石墨烯的表面官能團并不是隨機分布,而是具有高度的相關性。
氧化石墨烯的性能:(1)含有豐富的羥基、羧基和環氧基等含氧官能團,更高的氧化程度,更好的剝離度;(2)易于接枝改性,可與復合材料進行原位復合,從而賦予復合材料導電、導熱、增強、阻燃、***抑菌等性能;(3)易于剝離成穩定的氧化石墨烯分散液,易于成膜。氧化石墨烯的應用領域:應用于熱管理、橡膠、塑料、樹脂、纖維等高分子復合材料領域,還可以應用于鋰電正負極材料的復合、催化劑負載等。氧化石墨烯分散液的性能:(1)含有豐富的羥基、羧基和環氧基等含氧官能團;(2)易于接枝改性,可與復合材料進行原位復配,從而賦予復合材料導電、導熱、增強、阻燃、***、抑菌等性能;(3)SE3122在水中具有很好的分散性,樣品單層率>90%,產品經輕微攪拌就可與水相互溶;氧化石墨烯分散液的應用領域:應用于鋰電正負極材料,還可以應用于橡膠、塑料、樹脂、纖維等高分子復合材料領域。石墨烯的導熱性能優異,易分散,易加工。
在用氧化還原法將石墨剝離為石墨烯的工業化生產過程中,得到的石墨烯微片富含多種含氧官能團。由于石墨烯片層上的這些缺陷,在一些情況下,石墨烯微片無法滿足某些復合材料在抗靜電或導電、隔熱或導熱等方面的特殊要求。為了修復石墨烯片層上的缺陷,提高石墨烯微片的碳含量和在導電、導熱等方面的性能。通過調控氧化石墨烯的結構,降低氧化程度,降低難分解的芳香族官能團,如內酯、酮羰基、羧基等官能團的含量,從而增加后續官能團分解的效率和降低分解溫度。調控氧化條件,減少面內大面積反應。該減少缺陷的方案,有助于提升還原效率,減少面內難以修復的孔洞,使碳原子排布更密集,進一步減少修復段的勢壘,將能量用于增加碳原子離域尺寸,提升晶元大線,從而提升還原石墨烯的本征導電性。研發了深度還原技術,并通過自主開發的還原設備,將石墨烯微片碳的質量分數提高到90%以上;且粉末電導率相比還原前提升20倍,達到了4000S/m以上。石墨烯抗靜電阻燃復合材料具備優異的抗靜電性能和阻燃性能。制備氧化石墨烯使用方法
玻纖增強復合材料具有優異的力學與耐磨性能。過濾氧化石墨烯措施
大規模制備高質量的石墨烯晶體材料是所有應用的基礎,發展簡單可控的化學制備方法是**為方便、可行的途徑,這需要化學家們長期不懈的探索和努力;石墨烯的化學修飾:將石墨烯進行化學改性、摻雜、表面官能化以及合成石墨烯的衍生物,發展出石墨烯及其相關材料(grapheneandrelatedmaterials),來實現更多的功能和應用;石墨烯的表面化學:由于石墨烯晶體獨特的原子和電子結構,氣體分子與石墨烯表面間的相互作用將表現出許多特有的現象,這將為表面化學特別是表面催化研究提供一個獨特的模型表面;同時石墨烯具有完美的兩維周期平面結構,可以作為一個理想的催化劑載體,金屬/石墨烯體系將為表面催化研究提供一個全新的模型催化研究體系。過濾氧化石墨烯措施