由于GO表面具有較高的親和力,蛋白質可以吸附在GO表面,因此在生物液體中可以通過蛋白質來調節GO與細胞膜的相互作用。如,血液中存在著大量的血清蛋白,可能會潛在的影響GO的毒性。Ge與其合作者[16]利用電子顯微鏡技術就觀察到牛血清蛋白可以降低GO對細胞膜的滲透性,抑制了GO對細胞膜的破壞,同時降低了GO的細胞毒性。基于分子動力學研究分析,他們推斷可能是由于GO-蛋白質之間的作用削弱了GO-磷脂之間的相互作用。與此同時,GO對人血清蛋白的影響也被其他科研工作者所發現,特別是他們觀察到了GO可以抑制人血清蛋白與膽紅素之間的作用。因此,GO與血清蛋白之間是相互影響的。氧化石墨烯(GO)是印刷電子、催化、儲能、分離膜、生物醫學和復合材料的理想材料。開發氧化石墨生產企業
隨著材料領域的擴張,人們對于材料的功能性需求更為嚴苛,迫切需要在交通運輸、建筑材料、能量存儲與轉化等領域應用性質更加優良的材料出現,石墨烯以優異的聲、光、熱、電、力等性質成為各新型材料領域追求的目標,作為前驅體的GO以其靈活的物理化學性質、可規模化制備的特點更成為應用基礎研究的熱電。雖然GO具有諸多特性,但是由于范德華作用以及π-π作用等強相互作用力,使GO之間很容易在不同體系中發生團聚,其在納米尺度上表現的優異性能隨著GO片層的聚集***的降低直至消失,極大地阻礙了GO的進一步應用。開發氧化石墨材料將氧化石墨暴露在強脈沖光線下,例如氙氣燈也能得到石墨烯。
(1)將GO作為熒光共振能量轉移的受體,構建熒光共振能量轉移型氧化石墨烯生物傳感器,用于檢測各種生物分子。(2)可以將一些抗體鍵合在GO表面,構建成抗體型氧化石墨烯傳感器,通常是將GO作為熒光共振能量轉移或化學發光共振能量轉移的受體,以此來檢測抗原物質;或者利用GO比表面積較大能結合更多抗體的特點,將檢測信號進行進一步放大。(3)構建多肽型氧化石墨烯傳感器。因為GO是一種邊緣含有親水基團(-COOH,-OH及其他含氧基團)而基底具有高疏水性的兩性物質,當多肽與GO孵育時,多肽的芳環和其他疏水性殘基與GO的疏水性基底堆積,同時二者部分殘基之間也會存在靜電作用,這樣多肽組裝在GO上形成了多肽型氧化石墨烯傳感器。當多肽被熒光基團標記時,二者之間發生熒光共振能量轉移后,GO使熒光發生猝滅。
在推動以氧化石墨烯為載體的新藥進入臨床試驗前,勢必會面臨諸多挑戰:(1)優化氧化石墨烯的制備方法及生產工藝,使其具有可重復性,并能精確控制氧化石墨烯的尺寸和質量;(2)比較好使用劑量的摸索,找到以氧化石墨烯為載體的***療效和毒性之間的平衡點;(3)其他表面修飾劑的開發,需具有良好生物相容性且修飾后的氧化石墨烯能在短時間內被生物體***;(4)毒理學方法的進一步規范,系統闡明以氧化石墨烯為載體***的潛在毒性;(5)體內外模型的建立,***評價氧化石墨烯***的生物相容性,使其能更好地轉化到臨床。此外,以氧化石墨烯為載體的***在大規模工業化生產和應用時,還需考慮到對人體和環境的不利影響,是否可能導致潛在的人體暴露和環境污染問題,這些有待于進一步研究。氧化石墨烯是有著非凡價值的新材料,將會在生物醫學領域發揮舉足輕重的作用。氧化石墨是由牛津大學的化學家本杰明·C·布羅迪在1859年用氯酸鉀和濃硝酸混合溶液處理石墨的方法制得。
GO/RGO在光纖傳感領域會有越來越多的應用,其基本的原理是利用石墨烯及氧化石墨烯的淬滅特性、分子吸附特性以及對金屬納米結構的惰性保護作用等,通過吸收光纖芯層穿透的倏逝波改變光纖折射率或者基于表面等離子體共振(SPR)效應影響折射率。GO/RGO可以在光纖的側面、端面對光進行吸收或者反射,而為了增加光與GO/RGO層的相互作用,采用了不同光纖幾何彎曲形狀,如直型、U型、錐型和雙錐型等。有鉑納米顆粒修飾比沒有鉑納米顆粒修飾的氧化石墨烯薄膜光纖傳感器靈敏度高三倍,為多種氣體的檢測提供了一個理想的平臺。氧化石墨的親水性好,易于分散到水泥基復合材料中。開發氧化石墨材料
氧化石墨是一種碳、氧數量之比介于2.1到2.9之間黃色固體,并仍然保留石墨的層狀結構,但結構更復雜。開發氧化石墨生產企業
氧化應激是指體內氧化與抗氧化作用失衡,傾向于氧化,導致中性粒細胞炎性浸潤,蛋白酶分泌增加,產生大量氧化中間產物,即活性氧。大量的實驗研究已經確認細胞經不同濃度的GO處理后,都會增加細胞中活性氧的量。而活性氧的量可以通過商業化的無色染料染色后利用流式細胞儀或熒光顯微鏡檢測到。氧化應激是由自由基在體內產生的一種負面作用,并被認為是導致衰老和疾病的一個重要因素。氧化應激反應不僅與GO的濃度[17,18]有關,還與GO的氧化程度[19]有關。如將蠕蟲分別置于10μg/ml和20μg/ml的PLL-PEG修飾的GO溶液中,GO會引起蠕蟲細胞內活性氧的積累,其活性氧分別增加59.2%和75.3%。開發氧化石墨生產企業