探頭會使被測信號衰減,這樣呈現給示波器的信號就不會超過示波器的輸入范圍。較大衰減比如 10:1、50:1、100:1 等,用于測量較高的電壓,而小衰減比如 2:1 和 1:1,適用于較低的電壓。測量系統的噪聲(示波器噪聲加探頭噪聲)會使得探頭衰減比成正比增加。在選擇探頭時,這是一個重要的考慮因素。10:1 的無源探頭和 1:1 的無源探頭都可以用于測量 1Vpp 的典型信號,但 1:1 的無源探頭會帶來更有利的信噪比。
簡單的探頭沒有采取屏蔽措施很容易受到外界電磁場的干擾,而且本身等效電容較大,造成被測電路的負載增加,使被測信號失真。 差分探頭有高速度的數據傳輸功能,使用先進的數字信號處理技術和高速數據傳輸接**流電流探頭
無源探頭是最常見的探頭,一般購買示波器的時候廠家就會標配幾個。常見的無源探頭由探頭頭部、探頭電纜、補償設備或其他信號調節網絡和探頭連接頭組成。在這些類型的探針中沒有使用有源元件,如晶體管或放大器,所以不需要為探頭供電??偟膩碚f,無源探頭更常見,更容易使用,也更便宜。
示波器探頭對測量結果的準確性以及正確性至關重要,它是連接被測電路與示波器輸入端的電子部件。較簡單的探頭是連接被測電路與電子示波器輸入端的一根導線,復雜的探頭由阻容元件和有源器件組成。 有源高壓探頭如何調零消磁:電流探頭和示波器連接(示波器的輸出阻抗設置為1MΩ)。
相比于單端傳輸而言,差分傳輸抗干擾能力更強。因為差分傳輸兩條線路緊挨著,干擾噪聲幾乎在同時等值的被加載到兩根信號線路上,我們可以看作差分傳輸兩條線路收到的干擾信號其差值為0,即,噪聲對差分信號的邏輯意義不產生影響。單端傳輸因為其參考點為系統地,那么這個干擾噪聲的影響會直接反饋到信號接收端。
差分傳輸的方式減小了潛在的電磁干擾(EMI)。由于兩條信號傳輸線路靠得很近且信號幅值相等,這兩條信號傳輸線路與地線之間的耦合電磁場的幅值也相等,同時他們的信號極性相反,使得其所產生電磁場將相互抵消。因此對外界的電磁干擾也小。
差分傳輸方式時序定位更準確。差分信號的接收端可以根據兩條信號傳輸線路幅值之差發生正負跳變的點,作為判斷邏輯0/1跳變的點。而單端信號通常以電壓閾值作為信號邏輯0/1的跳變點,單端傳輸受電壓閾值與信號幅值電壓之比的影響較大,不適合低幅度的信號。
差分探頭的應用場景主要集中在需要精確測量差分信號和消除共模噪聲的場合。
監測信號串擾:在高速傳輸線路中,信號串擾是一個常見的問題。差分探頭能夠測量同一傳輸線路上的兩個電纜中的差分信號,從而確定兩個電纜之間的串擾水平。這對于診斷線路問題、優化線路設計和提高數據傳輸速率非常重要。
測量導體電位差:在工業領域中,測量不同金屬構成的工件之間的電位差是常見的需求。差分探頭可以測量兩個點之間的電位差,并幫助確定工件之間的接地質量和接觸情況。
科研與教學:在科研和教學領域,差分探頭也是一個有價值的工具。它可以幫助學生和科研人員更好地理解電路中的信號傳輸和相關問題,促進教學和科研工作的深入進行。 差分探頭能夠幫助工程師準確地測量和分析信號,從而確保設備的可靠性和安全性。
PT-350采用先進的磁電傳感器,通過測試電流所產生的磁場信號實現對電流信號的準確測量,產品堅固耐用,能夠**減少了操作難度,提高測量的準確性。本系列產品與電流探頭TCP202A的應用場合類似,都是適合高頻場合的電流數據的測量與分析。高頻電流探頭能夠廣泛的應用于電源、半導體器件、逆電器/轉換器、電子鎮流裝置、工用/消費電子、移動通信、馬達驅動器、交通運輸系統、傳播延遲測量等領域。此外在故障排查的過程中,使用電流探頭是非常關鍵的,通過電流探頭可以發現電纜連接頭搭接不良的問題,并進行整改。柔性電流探頭能夠測量從微小電流到較大電流的范圍。有源高壓探頭
在電力、工業自動化、電子電器、光電通訊及航空航天等多個領域發揮著不可替代的作用。交流電流探頭
示波器電流探頭的環路補償原理是為了糾正電流探頭在高頻測量中可能產生的相位移和幅度誤差。
環路補償的原理相位校正:環路補償主要針對的是探頭信號傳輸中的時間延遲問題。由于探頭本身的電路特性和傳輸介質的影響,信號在傳輸過程中會存在一定的時間延遲。通過測量和分析這個時間延遲,可以對探頭進行補償,以消除時間誤差,保證測量的準確性。
幅度校正:除了相位校正外,環路補償還可能包括幅度校正。這是因為探頭的電路特性可能導致信號的幅度衰減或增益,通過調整探頭的電路參數,可以消除這種幅度誤差。 交流電流探頭