resultant - 計(jì)算兩個(gè)多項(xiàng)式的終結(jié)式bernoulli - Bernoulli 數(shù)和多項(xiàng)式bernstein - 用Bernstein多項(xiàng)式近似一個(gè)函數(shù)content, primpart - 一個(gè)多元的多項(xiàng)式的內(nèi)容和主部degree, ldegree - 一個(gè)多項(xiàng)式的比較高次方/比較低次方divide - 多項(xiàng)式的精確除法euler - Euler 數(shù)和多項(xiàng)式icontent - 多項(xiàng)式的整數(shù)部分interp - 多項(xiàng)式的插值prem, sprem - 多項(xiàng)式的pseudo 余數(shù)和稀疏pseudo 余數(shù)randpoly - 隨機(jī)多項(xiàng)式生成器spline - 計(jì)算自然樣條函數(shù)第8章 有理表達(dá)式8.0 有理表達(dá)式簡(jiǎn)介科學(xué)計(jì)算軟件是用于進(jìn)行科學(xué)計(jì)算、數(shù)值分析和數(shù)據(jù)處理的工具。長(zhǎng)寧區(qū)特色科學(xué)計(jì)算軟件服務(wù)電話
Kalkulator:簡(jiǎn)介:適用于各類專業(yè)人士使用的計(jì)算工具,提供了許多物理學(xué)中常用的標(biāo)準(zhǔn)常量。功能:支持?jǐn)?shù)字運(yùn)算、線性代數(shù)運(yùn)算及統(tǒng)計(jì)運(yùn)算;支持二進(jìn)制、十進(jìn)制、八進(jìn)制、十六進(jìn)制及進(jìn)制間的轉(zhuǎn)換。科學(xué)計(jì)算器應(yīng)用(如手機(jī)或電腦上的科學(xué)計(jì)算器軟件):簡(jiǎn)介:這些軟件通常集成了計(jì)算器、科學(xué)計(jì)算器、個(gè)稅計(jì)算、匯率換算、日期計(jì)算等多種功能于一體。特點(diǎn):界面簡(jiǎn)潔明了,功能布局合理,易于上手;支持實(shí)時(shí)更新匯率等數(shù)據(jù);部分軟件還支持語(yǔ)音輸入和播報(bào)功能。虹口區(qū)定制科學(xué)計(jì)算軟件比較它們提供了強(qiáng)大的數(shù)值計(jì)算能力和靈活的編程接口,可以滿足各種復(fù)雜的計(jì)算需求。
特點(diǎn):用戶界面友好,易于上手;內(nèi)置豐富的數(shù)學(xué)函數(shù)和算法庫(kù),支持自定義函數(shù)和算法。Maple:簡(jiǎn)介:加拿大Waterloo大學(xué)開(kāi)發(fā)的數(shù)學(xué)軟件,具備強(qiáng)大的符號(hào)計(jì)算和數(shù)值計(jì)算能力。應(yīng)用:適用于各種數(shù)學(xué)和科學(xué)領(lǐng)域的計(jì)算,如物理學(xué)、化學(xué)、工程學(xué)等。Fortran、C、C++:簡(jiǎn)介:這些是高級(jí)編程語(yǔ)言,也常用于科學(xué)計(jì)算。它們提供了強(qiáng)大的數(shù)值計(jì)算能力和靈活的編程接口,可以滿足各種復(fù)雜的計(jì)算需求。應(yīng)用:Fortran常用于氣象預(yù)報(bào)、石油勘探等領(lǐng)域;C和C++則廣泛應(yīng)用于計(jì)算機(jī)圖形學(xué)、游戲開(kāi)發(fā)、科學(xué)模擬等多個(gè)領(lǐng)域。
exp - 指數(shù)函數(shù)sum - 確定求和不確定求和sqrt - 計(jì)算平方根算術(shù)運(yùn)算符+, -, *, /, ^add, mul - 值序列的加法/乘法2.2 三角函數(shù)arcsin, arcsinh, . - 反三角函數(shù)/反雙曲函數(shù)sin, sinh, . - 三角函數(shù)/雙曲函數(shù)2.3 LOGARITHMS 函數(shù)dilog - Dilogarithm 函數(shù)ln, log, log10 - 自然對(duì)數(shù)/一般對(duì)數(shù),常用對(duì)數(shù)2.4 類型轉(zhuǎn)換convert/`+`,convert/`*` - 轉(zhuǎn)換為求和/乘積convert/hypergeom - 將求和轉(zhuǎn)換為超越函數(shù)convert/degrees - 將弧度轉(zhuǎn)換為度convert/expsincos - 將trig 函數(shù)轉(zhuǎn)換為exp, sin, cosconvert/Ei - 轉(zhuǎn)換為指數(shù)積分應(yīng)用:Fortran常用于氣象預(yù)報(bào)、石油勘探等領(lǐng)域;
Beta - Beta函數(shù)EllipticModulus - 模數(shù)函數(shù)k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函數(shù)GaussAGM - Gauss 算術(shù)的幾何平均數(shù)JacobiAM, ., - Jacobi 振幅函數(shù)和橢圓函數(shù)JacobiTheta1, JacobiTheta4 - Jacobi theta函數(shù)JacobiZeta - Jacobi 的Zeta函數(shù)KelvinBer, KelvinBei - Kelvin函數(shù)KummerM, - Kummer M函數(shù)和U函數(shù)LambertW - LambertW函數(shù)LerchPhi - 一般的Lerch Phi函數(shù)LommelS1, LommelS2 - Lommel函數(shù)MeijerG - 一個(gè)修正的Meijer G函數(shù)Psi - Digamma 和Polygamma函數(shù)StruveH, StruveL - Struve函數(shù)WeierstrassP - Weierstrass P函數(shù)及其導(dǎo)數(shù)科學(xué)計(jì)算軟件的應(yīng)用范圍廣泛,幾乎涵蓋了所有需要精確計(jì)算的領(lǐng)域。楊浦區(qū)特色科學(xué)計(jì)算軟件推薦
隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展,科學(xué)計(jì)算軟件也在不斷更新?lián)Q代。長(zhǎng)寧區(qū)特色科學(xué)計(jì)算軟件服務(wù)電話
Dimension 行數(shù)和列數(shù)DotProduct 點(diǎn)積BilinearForm 向量的雙線性形式EigenConditionNumbers 計(jì)算數(shù)值特征值制約問(wèn)題的特征值或特征向量的條件數(shù)Eigenvalues 計(jì)算矩陣的特征值Eigenvectors 計(jì)算矩陣的特征向量Equal 比較兩個(gè)向量或矩陣是否相等ForwardSubstitute 求解 A . X = B,其中 A 為下三角型行階梯矩陣FrobeniusForm 將一個(gè)方陣約化為 Frobenius 型(有理標(biāo)準(zhǔn)型)GaussianElimination 對(duì)矩陣作高斯消元ReducedRowEchelonForm 對(duì)矩陣作高斯-約當(dāng)消元GetResultDataType 返回矩陣或向量運(yùn)算的結(jié)果數(shù)據(jù)類型長(zhǎng)寧區(qū)特色科學(xué)計(jì)算軟件服務(wù)電話
甘茨軟件科技(上海)有限公司匯集了大量的優(yōu)秀人才,集企業(yè)奇思,創(chuàng)經(jīng)濟(jì)奇跡,一群有夢(mèng)想有朝氣的團(tuán)隊(duì)不斷在前進(jìn)的道路上開(kāi)創(chuàng)新天地,繪畫新藍(lán)圖,在上海市等地區(qū)的數(shù)碼、電腦中始終保持良好的信譽(yù),信奉著“爭(zhēng)取每一個(gè)客戶不容易,失去每一個(gè)用戶很簡(jiǎn)單”的理念,市場(chǎng)是企業(yè)的方向,質(zhì)量是企業(yè)的生命,在公司有效方針的領(lǐng)導(dǎo)下,全體上下,團(tuán)結(jié)一致,共同進(jìn)退,**協(xié)力把各方面工作做得更好,努力開(kāi)創(chuàng)工作的新局面,公司的新高度,未來(lái)甘茨軟件供應(yīng)和您一起奔向更美好的未來(lái),即使現(xiàn)在有一點(diǎn)小小的成績(jī),也不足以驕傲,過(guò)去的種種都已成為昨日我們只有總結(jié)經(jīng)驗(yàn),才能繼續(xù)上路,讓我們一起點(diǎn)燃新的希望,放飛新的夢(mèng)想!
expand -表達(dá)式展開(kāi)Expand - 展開(kāi)表達(dá)式的惰性形式expandoff/expandon - 抑制/不抑制函數(shù)展開(kāi)5.2 因式分解Afactor - ***因式分解的惰性形式Afactors - ***因式分解分解項(xiàng)列表的惰性形式Berlekamp - 因式分解的Berlekamp 顯式度f(wàn)actor - 多元的多項(xiàng)式的因式分解factors - 多元多項(xiàng)式的因式分解列表Factor - 函數(shù)factor 的惰性形式Factors - 函數(shù)factors 的惰性形式polytools[splits] - 多項(xiàng)式的完全因式分解第6章 化簡(jiǎn)6.1 表達(dá)式化簡(jiǎn)118simplify - ...