Dimension 行數(shù)和列數(shù)DotProduct 點(diǎn)積BilinearForm 向量的雙線性形式EigenConditionNumbers 計(jì)算數(shù)值特征值制約問(wèn)題的特征值或特征向量的條件數(shù)Eigenvalues 計(jì)算矩陣的特征值Eigenvectors 計(jì)算矩陣的特征向量Equal 比較兩個(gè)向量或矩陣是否相等ForwardSubstitute 求解 A . X = B,其中 A 為下三角型行階梯矩陣FrobeniusForm 將一個(gè)方陣約化為 Frobenius 型(有理標(biāo)準(zhǔn)型)GaussianElimination 對(duì)矩陣作高斯消元ReducedRowEchelonForm 對(duì)矩陣作高斯-約當(dāng)消元GetResultDataType 返回矩陣或向量運(yùn)算的結(jié)果數(shù)據(jù)類型Mathematica:強(qiáng)大的計(jì)算軟件,適用于符號(hào)計(jì)算、數(shù)值計(jì)算和可視化。金山區(qū)定制科學(xué)計(jì)算軟件比較
evalm - 對(duì)矩陣表達(dá)式求值evaln - 求值到一個(gè)名稱evalr, shake - 用區(qū)間算法求表達(dá)式的值和計(jì)算范圍evalrC - 用復(fù)數(shù)區(qū)間算法對(duì)表達(dá)式求值value - 求值的惰性函數(shù)第4章 求根,解方程4.1 數(shù)值解fsolve - 利用浮點(diǎn)數(shù)算法求解solve/floats - 包含浮點(diǎn)數(shù)的表達(dá)式4.2 比較好化extrema - 尋找一個(gè)表達(dá)式的相對(duì)極值minimize, maximize - 計(jì)算最小值/最大值maxnorm - 一個(gè)多項(xiàng)式無(wú)窮大范數(shù)4.3 求根allvalues -計(jì)算含有RootOfs的表達(dá)式的所有可能值isqrt, iroot - 整數(shù)的平方根/第n 次根realroot - 一個(gè)多項(xiàng)式的實(shí)數(shù)根的隔離區(qū)間root - 一個(gè)代數(shù)表達(dá)式的第n 階根奉賢區(qū)智能科學(xué)計(jì)算軟件24小時(shí)服務(wù)在高等教育中,科學(xué)計(jì)算軟件成為學(xué)生學(xué)習(xí)高等數(shù)學(xué)、物理、工程等學(xué)科的得力助手。
二、科學(xué)計(jì)算軟件的應(yīng)用科學(xué)計(jì)算軟件的應(yīng)用范圍廣泛,幾乎涵蓋了所有需要精確計(jì)算的領(lǐng)域。在高等教育中,科學(xué)計(jì)算軟件成為學(xué)生學(xué)習(xí)高等數(shù)學(xué)、物理、工程等學(xué)科的得力助手。例如,Matlab軟件在數(shù)列極限、函數(shù)極限教學(xué)中的應(yīng)用,極大地幫助學(xué)生理解和掌握這些抽象概念。在科研領(lǐng)域,科學(xué)計(jì)算軟件更是不可或缺。研究人員可以利用這些軟件進(jìn)行復(fù)雜的模擬實(shí)驗(yàn)、數(shù)據(jù)分析以及結(jié)果可視化,從而加速科研進(jìn)程,提高研究效率。此外,科學(xué)計(jì)算軟件還在工程設(shè)計(jì)、金融分析、醫(yī)學(xué)圖像處理等領(lǐng)域發(fā)揮著重要作用。在工程設(shè)計(jì)領(lǐng)域,工程師可以利用軟件進(jìn)行結(jié)構(gòu)分析、流體動(dòng)力學(xué)模擬等,以優(yōu)化設(shè)計(jì)方案,降**造成本。在金融分析領(lǐng)域,科學(xué)計(jì)算軟件能夠處理大量的市場(chǎng)數(shù)據(jù),幫助投資者做出更加明智的決策。在醫(yī)學(xué)圖像處理領(lǐng)域,軟件能夠輔助醫(yī)生進(jìn)行病灶檢測(cè)、手術(shù)規(guī)劃等,提高醫(yī)療服務(wù)的質(zhì)量和效率。
14.4 惰性函數(shù)Det - 惰性行列式運(yùn)算符Eigenvals - 數(shù)值型矩陣的特征值和特征向量Hermite, Smith - 矩陣的Hermite 和Smith 標(biāo)準(zhǔn)型14.5 LinearAlgebra函數(shù)Matrix 定義矩陣Add 加/減矩陣Adjoint 伴隨矩陣BackwardSubstitute 求解 A . X = B,其中 A 為上三角型行階梯矩陣BandMatrix 帶狀矩陣Basis 返回向量空間的一組基SumBasis 返回向量空間直和的一組基IntersectionBasis 返回向量空間交的一組基BezoutMatrix 構(gòu)造兩個(gè)多項(xiàng)式的 Bezout 矩陣BidiagonalForm 將矩陣約化為雙對(duì)角型CharacteristicMatrix 構(gòu)造特征矩陣特點(diǎn):用戶界面友好,易于上手;內(nèi)置豐富的數(shù)學(xué)函數(shù)和算法庫(kù),支持自定義函數(shù)和算法。
★ Maple - CAD系統(tǒng)雙向連接:通過(guò)CAD Link為CAD系統(tǒng)增加重要的分析功能,如統(tǒng)計(jì)、優(yōu)化、單位和公差計(jì)算等,結(jié)果在CAD模型中自動(dòng)更新,支持SolidWorks,NX,和 Autodesk Inventor?!顴xcel:Excel數(shù)據(jù)的輸入和輸出;通過(guò)加載項(xiàng),在Excel內(nèi)使用Maple計(jì)**令?!?專業(yè)出版工具包括文件處理工具,可輸出Maple文件為PDF、HTML、XML、Word、LaTeX、和MathML格式文件。★ 數(shù)據(jù)庫(kù):對(duì)大型數(shù)據(jù)集完成分析和可視化。★MATLAB連接:您可以使用MATLAB Link在Maple中調(diào)用MATLAB完成計(jì)算,以及利用MATLAB代碼生成和轉(zhuǎn)換的功能;另一個(gè)選擇是Maple Toolbox for Matlab工具箱,Maple-Matlab雙向連接,共享數(shù)據(jù)、變量等。在工程設(shè)計(jì)領(lǐng)域,工程師可以利用軟件進(jìn)行結(jié)構(gòu)分析、流體動(dòng)力學(xué)模擬等,以優(yōu)化設(shè)計(jì)方案制造成本。奉賢區(qū)智能科學(xué)計(jì)算軟件24小時(shí)服務(wù)
MATLAB:用于數(shù)學(xué)計(jì)算、算法開(kāi)發(fā)、數(shù)據(jù)分析和可視化,特別在工程和科學(xué)領(lǐng)域中應(yīng)用。金山區(qū)定制科學(xué)計(jì)算軟件比較
QRDecomposition QR 分解RandomMatrix 構(gòu)造隨機(jī)矩陣RandomVector 構(gòu)造隨機(jī)向量Rank 計(jì)算矩陣的秩Row 返回矩陣的一個(gè)行向量序列Column 返回矩陣的一個(gè)列向量序列RowOperation 對(duì)矩陣作初等行變換ColumnOperation 對(duì)矩陣作出等列變換RowSpace 返回矩陣行空間的一組基ColumnSpace 返回矩陣列空間的一組基ScalarMatrix 構(gòu)造一個(gè)單位矩陣的數(shù)量倍數(shù)ScalarVector 構(gòu)造一個(gè)單位向量的數(shù)量倍數(shù)ScalarMultiply 矩陣與數(shù)的乘積MatrixScalarMultiply 計(jì)算矩陣與數(shù)的乘積VectorScalarMultiply 計(jì)算向量與數(shù)的乘積金山區(qū)定制科學(xué)計(jì)算軟件比較
甘茨軟件科技(上海)有限公司是一家有著先進(jìn)的發(fā)展理念,先進(jìn)的管理經(jīng)驗(yàn),在發(fā)展過(guò)程中不斷完善自己,要求自己,不斷創(chuàng)新,時(shí)刻準(zhǔn)備著迎接更多挑戰(zhàn)的活力公司,在上海市等地區(qū)的數(shù)碼、電腦中匯聚了大量的人脈以及**,在業(yè)界也收獲了很多良好的評(píng)價(jià),這些都源自于自身的努力和大家共同進(jìn)步的結(jié)果,這些評(píng)價(jià)對(duì)我們而言是比較好的前進(jìn)動(dòng)力,也促使我們?cè)谝院蟮牡缆飞媳3謯^發(fā)圖強(qiáng)、一往無(wú)前的進(jìn)取創(chuàng)新精神,努力把公司發(fā)展戰(zhàn)略推向一個(gè)新高度,在全體員工共同努力之下,全力拼搏將共同甘茨軟件供應(yīng)和您一起攜手走向更好的未來(lái),創(chuàng)造更有價(jià)值的產(chǎn)品,我們將以更好的狀態(tài),更認(rèn)真的態(tài)度,更飽滿的精力去創(chuàng)造,去拼搏,去努力,讓我們一起更好更快的成長(zhǎng)!
JordanBlockMatrix 構(gòu)造約當(dāng)塊矩陣JordanForm 將矩陣約化為約當(dāng)型KroneckerProduct 構(gòu)造兩個(gè)矩陣的 Kronecker 張量積LeastSquares 方程的**小二乘解LinearSolve 求解線性方程組 A . x = bLUDecomposition 計(jì)算矩陣的 Cholesky,PLU 或 PLU1R 分解Map 將一個(gè)程序映射到一個(gè)表達(dá)式上,對(duì)矩陣和向量在原位置上進(jìn)行處理MatrixAdd 計(jì)算兩個(gè)矩陣的線性組合VectorAdd 計(jì)算兩個(gè)向量的線性組合MatrixExponential 確定一個(gè)矩陣 A 的矩陣指數(shù) exp(A)Matrix...