MEMS技術的主要分類:傳感MEMS技術是指用微電子微機械加工出來的、用敏感元件如電容、壓電、壓阻、熱電耦、諧振、隧道電流等來感受轉換電信號的器件和系統。它包括速度、壓力、濕度、加速度、氣體、磁、光、聲、生物、化學等各種傳感器,按種類分主要有:面陣觸覺傳感器、諧振力敏感傳感器、微型加速度傳感器、真空微電子傳感器等。傳感器的發展方向是陣列化、集成化、智能化。由于傳感器是人類探索自然界的觸角,是各種自動化裝置的神經元,且應用領域大,未來將備受世界各國的重視。熱敏柔性電極采用 PI 三明治結構,底層基板、中間電極、上層絕緣層設計確保柔韌性與導電性。海南MEMS微納米加工圖片
MEMS制作工藝柔性電子的常用材料-PI:
柔性PI膜是一種由聚酰亞胺(PI)構成的薄膜材料,它是通過將均苯四甲酸二酐(PMDA)與二胺基二苯醚(ODA)在強極性溶劑中進行縮聚反應,然后流延成膜,然后經過亞胺化處理得到的高分子絕緣材料。柔性PI膜擁有許多獨特的優點,如高絕緣性、良好的粘結性、強的耐輻射性和耐高溫性能,使其成為一種綜合性能很好的有機高分子材料。
柔性PI膜的應用非常廣,尤其在電子、液晶顯示、機械、航空航天、計算機、光伏電池等領域有著重要的用途。特別是在液晶顯示行業中,柔性PI膜因其優越的性能而被用作新型材料,用于制造折疊屏手機的基板、蓋板和觸控材料。由于OLED顯示技術的快速發展,柔性PI膜已成為替代傳統ITO玻璃的新材料之一,廣泛應用于智能手機和其他可折疊設備的制造。 MEMSMEMS微納米加工按需定制MEMS技術常用工藝技術組合有:紫外光刻、電子束光刻EBL、PVD磁控濺射、IBE刻蝕、ICP-RIE深刻蝕。
MEMS制作工藝-聲表面波器件的特點:
1.聲表面波具有極低的傳播速度和極短的波長,它們各自比相應的電磁波的傳播速度的波長小十萬倍。在VHF和UHF波段內,電磁波器件的尺寸是與波長相比擬的。同理,作為電磁器件的聲學模擬聲表面波器件SAW,它的尺寸也是和信號的聲波波長相比擬的。因此,在同一頻段上,聲表面波器件的尺寸比相應電磁波器件的尺寸減小了很多,重量也隨之大為減輕。
2.由于聲表面波系沿固體表面傳播,加上傳播速度極慢,這使得時變信號在給定瞬時可以完全呈現在晶體基片表面上。于是當信號在器件的輸入和輸出端之間行進時,就容易對信號進行取樣和變換。這就給聲表面波器件以極大的靈活性,使它能以非常簡單的方式去。完成其它技術難以完成或完成起來過于繁重的各種功能。
3.采用MEMS工藝,以鈮酸鋰LNO和鉭酸鋰LTO為例子的襯底,通過光刻(含EBL光刻)、鍍膜等微納米加工技術,實現的SAW器件,在聲表面器件的濾波、波束整形等方面提供了極大的工藝和性能支撐。
超薄PDMS與光學玻璃的鍵合工藝優化:超薄PDMS(100μm以上)與光學玻璃的鍵合技術實現了柔性微流控芯片與高透光基板的集成,適用于熒光顯微成像、單細胞觀測等場景。鍵合前,PDMS基板經氧等離子體處理(功率50W,時間20秒)實現表面羥基化,光學玻璃通過UV-Ozone清洗去除有機物污染;然后在潔凈環境下對準貼合,施加0.2MPa壓力并室溫固化2小時,形成不可逆共價鍵,透光率>95%@400-800nm,鍵合界面缺陷率<1%。超薄PDMS的柔韌性(彈性模量1-3MPa)可減少玻璃基板的應力集中,耐彎曲半徑>10mm,適用于動態培養環境下的細胞觀測。在單分子檢測芯片中,鍵合后的玻璃表面可直接進行熒光標記物修飾,背景噪聲較傳統塑料基板降低60%,檢測靈敏度提升至單分子級別。公司開發的自動對準系統,定位精度±2μm,支持4英寸晶圓級批量鍵合,產能達500片/小時,良率>98%。該工藝解決了軟質材料與硬質光學元件的集成難題,為高精度生物檢測與醫學影像芯片提供了理想的封裝方案。MEMS是一種現代化的制造技術。
在MEMS微納加工領域,公司通過“材料創新+工藝突破”雙輪驅動,為醫療健康、生物傳感等場景提供高精度、定制化的微納器件解決方案。公司依托逾700平米的6英寸MEMS產線,可加工玻璃、硅片、PDMS、硬質塑料等多種基材的微納結構,覆蓋從納米級(0.5-5μm)到百微米級(10-100μm)的尺度需求。其**技術包括深硅刻蝕、親疏水改性、多重轉印工藝等,能夠實現復雜三維微流道、高深寬比微孔陣列及柔性電極的精密成型,滿足腦機接口、類***電生理研究、微針給藥等前沿醫療應用的嚴苛要求。深反應離子刻蝕是 MEMS 微納米加工中常用的刻蝕工藝,可用于制造高深寬比的微結構。江西本地MEMS微納米加工
MEMS制作工藝柔性電子的常用材料是什么?海南MEMS微納米加工圖片
MEMS制作工藝ICP深硅刻蝕:
在半導體制程中,單晶硅與多晶硅的刻蝕通常包括濕法刻蝕和干法刻蝕兩種方法各有優劣,各有特點。濕法刻蝕即利用特定的溶液與薄膜間所進行的化學反應來去除薄膜未被光刻膠掩膜覆蓋的部分,而達到刻蝕的目的。因為濕法刻蝕是利用化學反應來進行薄膜的去除,而化學反應本身不具方向性,因此濕法刻蝕過程為等向性。
濕法刻蝕過程可分為三個步驟:
1)化學刻蝕液擴散至待刻蝕材料之表面;
2)刻蝕液與待刻蝕材料發生化學反應;
3)反應后之產物從刻蝕材料之表面擴散至溶液中,并隨溶液排出。濕法刻蝕之所以在微電子制作過程中被采用乃由于其具有低成本、高可靠性、高產能及優越的刻蝕選擇比等優點。
但相對于干法刻蝕,除了無法定義較細的線寬外,濕法刻蝕仍有以下的缺點:1)需花費較高成本的反應溶液及去離子水:2)化學藥品處理時人員所遭遇的安全問題:3)光刻膠掩膜附著性問題;4)氣泡形成及化學腐蝕液無法完全與晶片表面接觸所造成的不完全及不均勻的刻蝕 海南MEMS微納米加工圖片