激光切割是應用激光聚焦后產生的高功率密度能量來實現的。在計算機的控制下,通過脈沖使激光器放電,從而輸出受控的重復高頻率的脈沖激光,形成一定頻率,一定脈寬的光束,該脈沖激光束經過光路傳導及反射并通過聚焦透鏡組聚焦在加工物體的表面上,形成一個個細微的、高能量密度光斑,焦斑位于待加工面附近,以瞬間高溫熔化或氣化被加工材料。每一個高能量的激光脈沖瞬間就把物體表面濺射出一個細小的孔,在計算機控制下,激光加工頭與被加工材料按預先繪好的圖形進行連續相對運動打點,這樣就會把物體加工成想要的形狀。激光切割機在切割過程中產生的噪音低,為工作環境提供了良好的條件。濟南管板一體激光切割機操作方法
激光切割機在切割過程中,光束經切割頭的透鏡聚焦成一個很小的焦點,使焦點處達到高的功率密度,其中切割頭固定在z軸上。這時,光束輸入的熱量遠遠超過被材料反射、傳導或擴散的部分熱量,材料很快被加熱到熔化與汽化溫度,與此同時,一股高速氣流從同軸或非同軸側將熔化及汽化了的材料吹出,形成材料切割的孔洞。隨著焦點與材料的相對運動,使孔洞形成連續的寬度很窄的切縫,完成材料的切割。當前,激光切割機的外光路部分主要采用的是飛行光路系統。從激光發生器發出的光束經過反射鏡1、2、3到達切割頭上的聚焦透鏡,聚焦后在待加工材料表面形成光斑。其中反射鏡片1固定在機身上不動;橫梁上反射鏡2隨著橫梁的運動作x向運動;z軸上的反射鏡片3隨z軸的運動作y向的運動。從圖中不難看出,在切割過程中,隨著橫梁作x向運動,z軸部分作y向運動,光路的長度時刻發生著變化。濟南管板一體激光切割機操作方法激光切割機的切割速度可以根據需要進行調整,滿足了不同生產需求。
為進一步提高激光切割速度,可根據空氣動力學原理,在提高噴嘴壓力的前提下不產生正激波,設計制造一種縮放型噴嘴,即拉伐爾(Laval)噴嘴。為方便制造可采用如圖4的結構。德國漢諾威大學激光中心使用500WCO2激光器,透鏡焦距2.5",采用小孔噴嘴和拉伐爾噴嘴分別作了試驗,見圖4。試驗結果如圖5所示:分別表示NO2、NO4、NO5噴嘴在不同的氧氣壓力下,切口表面粗糙度Rz與切割速度Vc的函數關系。從圖中可以看出NO2小孔噴嘴在Pn為400Kpa(或4bar)時切割速度只能達到2.75m/min(碳鋼板厚為2mm)。NO4、NO5二種拉伐爾噴嘴在Pn為500Kpa到600Kpa時切割速度可達到3.5m/min和5.5m/min。應指出的是切割壓力Pc還是工件與噴嘴距離的函數。由于斜激波在氣流的邊界多次反射,使切割壓力呈周期性的變化。
具體而言,激光切割機的原理包括以下幾個步驟:1.激光發生器產生激光束:激光切割機中的激光發生器會產生高能量、高聚集度的激光束。常用的激光類型有CO2激光、光纖激光和固體激光等。2.激光束導向和聚焦:通過光學器件,激光束被導向并聚焦成小直徑的光斑。通常使用透鏡或鏡片來控制激光束的路徑并使其聚焦到較小的點。3.材料吸收激光能量:激光束照射到材料表面時,材料會吸收激光的能量。吸收率在不同材料之間會有所差異,一些金屬材料對激光有較高的吸收率。激光切割機擁有較大的工作臺面,可以容納大型工件進行切割。
為了滿足應用的需要,主要發展了以下幾項激光技術:①激光測距技術。它是較先得到實際應用的激光技術。20世紀60年代末,激光測距儀開始裝備隊伍,現已研制生產出多種類型,大都采用釔鋁石榴石激光器,測距精度為±5米左右。由于它能迅速準確地測出目標距離,普遍用于偵察測量和武器火控系統。②激光制導技術。激光制導武器精度高、結構比較簡單、不易受電磁干擾,在精確制導武器中占有重要地位。70年代初,美國研制的激光制導航空彈在越南戰場初次使用。80年代以來,激光制導導彈和激光制導炮彈的生產和裝備數量也日漸增多。激光切割機的高效率使得大批量生產變得更加輕松,提高了企業的產能。濟南管板一體激光切割機操作方法
激光切割機在金屬加工行業中被普遍應用,提高了生產效率。濟南管板一體激光切割機操作方法
激光切割機的原理包括以下幾個步驟:1.材料加熱融化或汽化:激光的高能量密度使得材料迅速加熱,達到融化或汽化的溫度。材料的融化或汽化需要消耗大量的熱能,從而實現切割。2.輔助氣體噴射:在切割過程中,常常會通過噴嘴噴射輔助氣體(如氮氣、氧氣或惰性氣體)來保護激光切割區域,吹除融化的材料并幫助加快切割速度。3.運動控制系統:激光切割機通常會配備一個運動控制系統,用于控制激光切割頭在材料表面上的運動路徑。這可以實現各種復雜形狀的切割,由計算機程序控制。濟南管板一體激光切割機操作方法