BIONOVA X 推動動態組織模型構建:生命科學研究逐漸從靜態模型向動態模型轉變,以更好地模擬生物體的真實生理環境。BIONOVA X 3D 生物打印機采用了獨特的聲波振動氣泡界面技術,實現了每秒 0.7 毫米的超高速固化速度,比傳統打印方法提高350倍。這一技術突破使得打印具有動態特性的組織模型成為可能,如心臟瓣膜、血管等。在構建心臟瓣膜模型時,BIONOVA X 能夠在打印過程中實時模擬血流剪切力,誘導內皮細胞定向分化,使打印出的瓣膜更接近真實生理結構和功能。這種動態組織模型對于研究心血管疾病的發病機制、開發新型treatment方法具有重要意義。未來,BIONOVA X 有望在更多動態組織和organ的打印中取得突破,為再生醫學和組織修復領域帶來新的希望。CELLINK3D生物打印研究致力于開發新的打印策略促進生命科學發展。黑龍江生物實驗室生命科學光固化LUMENX3D生物打印
BIONOVA X lead動態生物制造新方向:隨著生命科學對生物體動態特性研究的不斷深入,動態生物制造成為未來的發展趨勢。BIONOVA X 3D 生物打印機以其獨特的聲波振動氣泡界面技術,lead了動態生物制造的新方向。在構建動態組織模型時,BIONOVA X 不only能夠快速打印出具有復雜結構的組織,還能在打印過程中模擬生物體的動態力學環境,使打印出的組織更具生物活性和功能。在神經組織工程研究中,BIONOVA X 可以打印出具有神經突觸連接的腦組織模型,并模擬神經信號的傳導過程,為研究神經系統疾病的發病機制和treatment方法提供了理想的實驗平臺。未來,BIONOVA X 將在更多動態生物制造領域發揮lead作用,推動生命科學研究向更高層次發展。四川實驗室儀器生命科學擠出式BIOINKREDIBLE3D生物打印在線 pH 監測 + 智能調控,培養環境動態平衡,細胞凋亡減少 70%,成活率肉眼可見!
細胞培養的理想設備,OLS CERO3D 細胞生物反應器助力科研創新!在Organoids研究、免疫treatment研究等領域,它以先進的 3D 細胞培養技術為core,展現出the best性能。4 個 50ml 的independence一次性 CERO 試管,可independence開展不同實驗,方便快捷。雙向旋轉均勻化翅片實現minimum剪切力,確保細胞均勻生長。precise控制環境溫度、二氧化碳水平和在線 pH 監測,為細胞提供穩定的生長環境。無需嵌入基底、減少細胞凋亡壞死,提高細胞培養質量和效率。長期培養超 1 年,運行成本remarkable降低,是科研人員探索生命奧秘、推動科研創新發展的重要設備,助力科研人員在生命科學領域實現新突破。
MFS - 4 與外泌體研究:外泌體研究在生命科學領域逐漸興起,ELVEFLOW MFS - 4 為其提供先進技術手段。在tumor外泌體分離與功能研究中,利用其多相流協同處理系統,高效分離tumor細胞分泌的外泌體。通過對這些外泌體的研究,可深入了解tumor細胞的轉移機制、tumor微環境的調控等,為tumor診斷與treatment提供新的生物標志物和treatment靶點,拓展生命科學在tumor研究領域的深度與廣度。MFS - 4 的多相流應用:在生命科學的藥物載體研究、細胞分離等方面,多相流協同處理十分關鍵。ELVEFLOW MFS - 4 的四通道混合模塊可實現油 - 水 - 細胞懸液的三相共流。在 CAR - T 細胞treatment中,高效封裝 CAR 基因修飾的慢病毒載體,提升轉染效率。同時,其高速攝像機實時監測功能確保制備的載藥微球粒徑均一性達 98%,為細胞treatment等前沿生命科學研究提供高質量的技術支持。DNA生物試劑的精確性為生命科學研究提供堅實保障。
人工智能在生命科學中的應用日益broad。美國的科技公司和科研機構利用人工智能算法進行藥物分子設計,much縮短藥物研發周期。歐洲在醫療影像人工智能分析方面處于lead地位,能夠快速準確地識別疾病特征。中國也在積極布局人工智能與生命科學的交叉研究,如利用人工智能輔助疾病診斷和預測疾病發展。未來,人工智能將在生命科學的各個環節發揮更大作用,從基礎研究到臨床應用,推動生命科學研究范式的轉變。微生物學研究在全球范圍內不斷深入。美國科學家發現新型antibiotic產生菌,為解決antibiotic耐藥性問題帶來希望。歐洲科研人員對腸道微生物組進行大規模研究,揭示腸道微生物與人體健康和疾病的密切關系。中國在微生物發酵技術方面優勢明顯,利用微生物發酵生產食品、藥品和生物燃料等。未來,微生物學將在生物修復、生物制造、益生菌開發等領域發揮更大作用,如利用微生物修復受污染的土壤和水體,開發新型益生菌改善人體健康。CELLINK3D生物打印研究注重與生命科學其他領域的交叉融合推動技術創新。湖北實驗室儀器生命科學CELLINKBIO
3D生物打印能夠構建仿生組織為生命科學研究生物力學提供素材。黑龍江生物實驗室生命科學光固化LUMENX3D生物打印
OLS CERO3D 生物反應器的core創新 ——雙向旋轉均勻化翅片,巧妙解決了傳統培養中 “剪切力損傷” 與 “營養分布不均” 的雙重難題。該設計通過順時針與逆時針交替旋轉,在試管內形成動態渦流,使營養物質、氧氣與信號分子的擴散效率提升 80%,同時將剪切力降至傳統搖床的 1/10 以下。這種 “溫柔而均勻” 的培養環境,不only保護了干細胞、Organoids等脆弱細胞的結構完整性,更促進了細胞間信號傳遞,使多細胞球體的形成效率提升 50%。經流體力學模擬與實驗驗證,該翅片設計在 50ml 體積內實現了 ±2% 的營養濃度均勻度,為細胞提供了前所未有的 “穩定微環境”,成為 3D 細胞培養技術的里程碑式突破。黑龍江生物實驗室生命科學光固化LUMENX3D生物打印
構建功能性心臟組織模型是心血管研究的前沿方向,而 OLS CERO3D 生物反應器為這一領域提供了 “全鏈路解決方案”。其3D 細胞培養技術支持心肌干細胞向心肌細胞的定向分化,雙向旋轉均勻化翅片確保細胞在三維空間中形成有序排列的肌纖維結構,同步收縮效率提升 50%。independence控制的培養試管可模擬不同病理條件(如缺氧、炎癥環境),配合在線 pH 與 CO?監測,實時觀察心肌細胞電生理特性與收縮功能的變化。在心力衰竭藥物研究中,利用該設備培養的心臟組織模型能precise反映藥物對心肌收縮力的調節作用,避免了動物實驗的種屬差異干擾。更值得關注的是,長期培養超 1 年的能力使科研人員能...