等離子球化技術(shù)通過(guò)高溫等離子體將不規(guī)則金屬顆粒重新熔融并球形化,明顯提升粉末流動(dòng)性和打印質(zhì)量。例如,鎢粉經(jīng)球化后霍爾流速?gòu)?5s/50g降至22s/50g,堆積密度提高至理論值的65%,適用于電子束熔化(EBM)工藝。該技術(shù)還可處理回收粉末,去除衛(wèi)星粉和氧化層,使316L不銹鋼回收粉的氧含量從0.1%降至0.05%。德國(guó)H.C. Starck公司開(kāi)發(fā)的射頻等離子系統(tǒng),每小時(shí)可處理50kg鈦粉,成本較新粉降低40%。但高能等離子體易導(dǎo)致小粒徑粉末蒸發(fā),需精細(xì)控制溫度和停留時(shí)間。水霧化法生產(chǎn)的316L不銹鋼粉末成本較低,但流動(dòng)性略遜于氣霧化制備的粉末。河南高溫合金粉末廠家
金屬3D打印的主要材料——金屬粉末,其制備技術(shù)直接影響打印質(zhì)量。主流工藝包括氬氣霧化法和等離子旋轉(zhuǎn)電極法(PREP)。氬氣霧化法通過(guò)高速氣流沖擊金屬液流,生成粒徑分布較寬的粉末,成本較低但易產(chǎn)生空心粉和衛(wèi)星粉。而PREP法利用等離子電弧熔化金屬棒料,通過(guò)離心力甩出液滴形成球形粉末,其氧含量可控制在0.01%以下,球形度高達(dá)98%以上,適用于航空航天等高精度領(lǐng)域。例如,某企業(yè)采用PREP法生產(chǎn)的鈦合金粉末,其疲勞強(qiáng)度較傳統(tǒng)工藝提升20%,但設(shè)備成本是氣霧化法的3倍。內(nèi)蒙古3D打印金屬粉末合作馬氏體時(shí)效鋼(18Ni300)粉末通過(guò)定向能量沉積(DED)技術(shù),可制造兼具高韌性和超高的強(qiáng)度的模具鑲件。
3D打印固體氧化物燃料電池(SOFC)的鎳-YSZ陽(yáng)極,多孔結(jié)構(gòu)使電化學(xué)反應(yīng)表面積增加5倍,輸出功率密度達(dá)1.2W/cm2(傳統(tǒng)工藝0.8W/cm2)。氫能領(lǐng)域,鈦基雙極板通過(guò)內(nèi)部流道拓?fù)鋬?yōu)化,使燃料電池堆體積減少30%。美國(guó)Relativity Space打印的液態(tài)甲烷/液氧火箭發(fā)動(dòng)機(jī),采用鉻鎳鐵合金內(nèi)襯與銅合金冷卻通道一體成型,燃燒效率提升至99.8%。但高溫燃料電池的長(zhǎng)期穩(wěn)定性需驗(yàn)證:3D打印件的熱循環(huán)壽命(>5000次)較傳統(tǒng)工藝低20%,需通過(guò)摻雜氧化鈰納米顆粒改善。
納米級(jí)金屬粉末(粒徑<100nm)可實(shí)現(xiàn)超高分辨率打印(層厚<5μm),用于微機(jī)電系統(tǒng)(MEMS)和醫(yī)療微型傳感器。例如,納米銀粉打印的柔性電路導(dǎo)電性接近塊體銀,但成本是傳統(tǒng)蝕刻工藝的3倍。主要瓶頸是納米粉的高活性:比表面積大導(dǎo)致易氧化(如鋁粉自燃),需通過(guò)表面包覆(如二氧化硅涂層)或惰性氣體封裝儲(chǔ)存。此外,納米顆粒吸入危害大,需配備N99級(jí)防護(hù)的封閉式打印系統(tǒng)。日本JFE鋼鐵已開(kāi)發(fā)納米鐵粉的穩(wěn)定制備工藝,未來(lái)或推動(dòng)微型軸承和精密模具制造。
鎳基高溫合金粉末通過(guò)3D打印可生成耐1200℃極端環(huán)境的航空發(fā)動(dòng)機(jī)燃燒室部件。紹興3D打印金屬粉末合作
納米級(jí)金屬粉末的制備技術(shù)突破推動(dòng)了微尺度金屬3D打印設(shè)備的發(fā)展。河南高溫合金粉末廠家
通過(guò)原位合金化技術(shù),3D打印可制造組分連續(xù)變化的梯度材料。例如,NASA的GRX-810合金在打印過(guò)程中梯度摻入0.5%-2%氧化釔顆粒,使高溫抗氧化性提升100倍,用于超音速燃燒室襯套。另一案例是銅-鉬梯度熱沉:銅端熱導(dǎo)率380W/mK,鉬端熔點(diǎn)2620℃,界面通過(guò)過(guò)渡層(添加0.1%釩)實(shí)現(xiàn)無(wú)缺陷結(jié)合。挑戰(zhàn)在于元素?cái)U(kuò)散控制:需在單道熔池內(nèi)實(shí)現(xiàn)成分精確混合,激光掃描策略采用螺旋漸變路徑,能量密度從200J/mm3逐步調(diào)整至500J/mm3。德國(guó)Fraunhofer研究所已成功打印出熱膨脹系數(shù)梯度變化的衛(wèi)星支架,溫差適應(yīng)范圍擴(kuò)展至-180℃~300℃。河南高溫合金粉末廠家