提出一種往復式壓縮機示功圖處理方法以及基于卷積神經網絡機器學習的智能往復式壓縮機故障診斷流程。使用等參元歸一化方式處理示功圖,處理后的樣本經卷積神經網絡分類識別,可實現往復式壓縮機自學習、智能故障診斷。使用等參元歸一化方法,可無需考慮工藝變化、環境改變等造成示功圖圖形改變的因素,這樣示功圖的處理方式...
對試驗臺主要零部件進行模態分析,結果顯示各部件固有頻率遠離航空發動機各階臨界轉速,說明了試驗臺初步設計的合理性;為提高鼠籠彈性支承剛度設計的精確性,提出了有效集算法和遺傳算法相結合的優化方法,優化后,2#和3#支點鼠籠彈支的設計剛度與目標值之間的誤差分別為0.3%和0.1%,驗證了該方法的高精度和高效率。然后,建立雙轉子系統動力學簡化模型,運用有限單元法推導系統動力學方程,編寫程序計算了高低壓轉子分別為主激勵時系統臨界轉速,結果表明計算值與航空發動機實測值的誤差遠超過了允許誤差5%,需后續優化。接著,運用變換哈墨斯利算法優化系統的臨界轉速,對比優化值與航空發動機實測值的誤差,其誤差不超過允許誤差5%,低壓轉子結構參數符合設計要求,證明了優化方法的可行性。故障機理研究模擬實驗臺的實驗結果具有重要意義。北京多功能故障機理研究模擬實驗臺
瓦倫尼安實驗臺主要用于高速旋轉軸系的轉子動力學驗證研究,配合多通道振動數據采集器,上位機軟件,電渦流傳感器,振動加速度傳感器,激光轉速計,冷卻水循環系統使用。,多通道信號能夠更加***地表征旋轉機械的運行狀態,因此融合多傳感器信號采集通道的診斷方法相較于單通道方法更能準確判斷機械故障。針對利用單信號采集通道實施故障辨識方法的識別精度較低問題,提出一種融合多通道信息的集成極限學習機模式辨識方法應用于旋轉機械故障診斷。首先通過布置在機械設備關鍵部位的多個信號采集通道獲取振動信號,并對各通道信號分別提取相同特征,構建與通道相對應的特征集;其次將各特征集劃分為訓練、測試集并分別構建及測試極限學習機,實現信號采集通道與分類模型的一一對應;***采用相對多數投票法對各極限學習機的輸出進行整合得到集成模型,從決策層角度實現多通道的信息融合,并輸出機械設備故障診斷結果。實驗結果表明,該方法相較于利用單通道信號的極限學習機具有較好穩定性及較高辨識精度。關鍵詞:故障診斷;多通道;集成學習;極限學習機;蘇州故障機理研究模擬實驗臺現狀故障機理研究模擬實驗臺的實驗數據至關重要。
PT300測試臺組成:測試臺主要由微型直流電機、調速器、雙支撐軸承、動平衡轉子盤、軸承、齒輪、轉軸、傳感器支架、減震基礎底座等組成,采用微型模塊化設計,可用于現場測點分散的大型結構靜力試驗、擬靜力試驗、疲勞試驗等場合,能捕準確捉材料由彈性區域進入塑性區域整個過程的緩變信號。主要特點●采集器與控制器之間采用RS485總線星型連接●每個控制器可以控制8個采集器,每個采集器8通道或16通道可選●控制器支持POE供電、NTP同步,
標準壓電式加速度傳感器三角剪切結構,基座應變小,溫度瞬態響應低,敏感元件為高穩定的特種陶瓷或石英,靈敏度穩定性好。傳感器采用兩端 M5 螺孔設計,便于背對背標定。1.測量通道數量:四通道、八通道、十六通道、傳感器同時數據信號采集。2.支持傳感器類型:壓電式傳感器振動,噪聲聲級計,轉速計(*四通道)、電壓型輸出傳感器。3.數模轉換器精度:24AD位。4.支持比較高采樣頻率:比較高100kHz/通道,多種量程范圍可選。5.輸入精度:相位:優于0.1度,幅值:優于0.1%。6.儀器比較高動態范圍:110dB。如何評估實驗臺的故障數據的質量?
針對滾動軸承故障類型和損傷程度難以識別的問題,提出一種基于變分模態分解(VariationalModeDecomposition,VMD)和Gath-Geva(GG)模糊聚類相結合的滾動軸承故障分類方法。該方法通過對已知滾動軸承故障信號進行VMD分解,利用分量頻率中心的大小確定分解模態的數量,將所得本征模態分量組成初始特征矩陣進行奇異值分解;選取3個比較大奇異值作為GG聚類算法的輸入,得到已知故障信號的隸屬度矩陣和聚類中心;通過待測信號初始隸屬度矩陣與已知故障信號聚類中心之間的海明貼近度識別滾動軸承的故障類型和損傷程度。通過滾動軸承振動數據對所述方法的有效性進行驗證,瓦倫尼安教學設備桌面式齒輪故障教學平臺便攜式轉子軸承教學實驗臺桌面式轉子軸承故障教學平臺轉子動力學研究實驗臺故障機理研究教學平臺轉子軸承綜合故障模擬實驗臺診斷臺轉子軸承教學平臺故障機理研究模擬實驗臺的研發過程充滿挑戰。葉片故障機理研究模擬實驗臺
故障機理研究模擬實驗臺的運行需要精心維護。北京多功能故障機理研究模擬實驗臺
HOJOLO自主開發的智能在線監測系統平臺,以結構安全和設備故障預測為導向,深度融合了物聯網、大數據、云/邊緣計算、人工智能以及數字孿生等先進理念,可廣泛應用于橋梁、房屋、隧道、邊坡、大壩、港機、機械設備、電力設施以及武器裝備等結構或設備的在線監測與健康管理。系統特點結構信息管理支持用戶自定義編輯結構信息,內置地理位置地圖,支持導入大部分主流格式的2D圖形或3D實體模型用于測點布設可視化展示狀態顯示支持自定義大屏展示界面的設計與主題管理,豐富的數據展示模塊,多維度直觀顯示被監測對象的實時/歷史工作狀態、報警等信息測點設置支持自定義創建與編輯測點,包括測點的基本信息、采樣設置、實時分析和存儲設置等。支持分析點數以及數據稀釋規則自定義,優化數據存儲結構,合理有效利用服務器存儲空間北京多功能故障機理研究模擬實驗臺
提出一種往復式壓縮機示功圖處理方法以及基于卷積神經網絡機器學習的智能往復式壓縮機故障診斷流程。使用等參元歸一化方式處理示功圖,處理后的樣本經卷積神經網絡分類識別,可實現往復式壓縮機自學習、智能故障診斷。使用等參元歸一化方法,可無需考慮工藝變化、環境改變等造成示功圖圖形改變的因素,這樣示功圖的處理方式...
新一代聯軸器對中儀工作原理
2025-07-09無線激光對中儀器使用
2025-07-09CCD聯軸器對中儀工作原理
2025-07-09專業激光對中儀器找正方法
2025-07-0910米激光對中儀器保養
2025-07-09專業激光對中儀器怎么用
2025-07-09CCD激光對中儀器使用方法
2025-07-09漢吉龍測控激光對中儀器的作用
2025-07-09漢吉龍測控聯軸器對中儀視頻
2025-07-09