提出一種往復式壓縮機示功圖處理方法以及基于卷積神經網絡機器學習的智能往復式壓縮機故障診斷流程。使用等參元歸一化方式處理示功圖,處理后的樣本經卷積神經網絡分類識別,可實現往復式壓縮機自學習、智能故障診斷。使用等參元歸一化方法,可無需考慮工藝變化、環境改變等造成示功圖圖形改變的因素,這樣示功圖的處理方式...
航空發動機雙轉子系統葉片-機匣碰摩故障模擬,Faultsimulationofblade-casingrubbingfordual-rotorsystemofaero-engines葉片-機匣碰摩嚴重影響航空發動機的性能、可靠性及安全性??紤]葉片-機匣碰摩、軸承非線性、聯軸器不對中及高低壓轉子不平衡,利用有限元法建立雙轉子系統的非線性動力學模型;然后利用模態綜合法縮減系統自由度,數值求解降階模型的非線性振動響應,分析葉片-機匣碰摩故障響應特征。數值與實驗結果表明:航空發動機雙轉子系統為多激勵非線性系統,系統振動響應頻率成分復雜,包括高低壓轉軸頻率、多倍頻、組合頻率及其他復雜頻率;當葉尖間隙較大時,葉片-機匣碰摩可能為局部碰摩,故障特征頻率為葉片通過頻率及其倍頻,并在葉片通過頻率兩側存在高低壓轉軸頻率的調制邊頻帶;當葉尖間隙較小時,葉片-機匣碰摩可能發生全周碰摩,呈現出由干摩擦引起的強烈自激振動。研究結果可為航空發動機雙轉子系統的葉片-機匣碰摩故障診斷及葉尖間隙設計提供一定參考。故障機理研究模擬實驗臺的技術不斷更新。租賃故障機理研究模擬實驗臺企業
HOJOLO聲壓法測定聲功率包含:工程法、簡易法、消聲室和半消聲室精密法,可進行背景噪聲、環境聲場等修正?聲強法測定聲功率包含離散點測量法、掃描測量法、掃描測量精密法,對整個測試進行合適性判斷?聲壓法與聲強法均嚴格按照GB/T或ISO標準執行聲源定位功能特點?基于波束形成技術的聲陣列分析?快速定位噪聲源?可指定分析頻段,進行分析頻段內的噪聲源定位?噪聲源定位結果以云圖方式直觀顯示聲品質分析功能特點?對多個、典型聲品質客觀參量進行測試、分析?噪聲評價分析功能,可以對噪聲的干擾和危害進行評價,包含多種評價量和評價方法貴州租賃故障機理研究模擬實驗臺故障機理研究模擬實驗臺的實驗數據至關重要。
:為了解決變分模態分解的參數選取問題并更準確的提取軸承故障特征信息,提出了一種多目標優化變分模態分解(VMD)的軸承故障診斷方法。建立了以信息熵、相關系數和峭度的目標函數以及綜合評價指標,將VMD的參數優化問題轉換成多目標優化的帕累托(Pareto)問題。首先,利用多目標粒子群優化算法(MOPSO)對三個目標函數進行尋優,得到VMD參數組合的比較好Pareto解集;其次,對Pareto解集用綜合評價指標對其進行評價,確定出VMD的比較好參數組合;利用已確定的比較好參數組合對軸承故障信號進行VMD分解,得到若干本征模態分量(IMFs);再利用綜合評價指標選擇出比較好IMF,提取故障特征。仿真信號和實際軸承振動信號分析結果表明所提方法的有效性。關鍵詞:變分模態分解;故障診斷;信息熵;峭度;多目標粒子群優化算法
現有方法對強噪聲背景下的弱信號的分析不是很理想,提出一種循環相位網絡來分析高斯白噪聲下的微弱周期信號,循環相位網絡在一定信噪比范圍內相比于其他微弱信號檢測法能更好的提取微弱信號相關信息,且計算量小,相關理論簡單,適應于對微弱信號的快速檢測。為了進一步減少計算量,引入了微弱信號存在性檢測法濾除純高斯噪聲信號,經實驗驗證微弱信號存在性檢測法與循環相位網絡相結合,對強噪聲背景下的微弱周期信號分析具有良好的效果故障機理研究模擬實驗臺的操作要嚴格遵守規定。
PT400mini便攜式軸承齒輪實驗臺可用于振動測試儀器功能演示和旋轉機器振動檢測、分析和故障診斷培訓演示。輕便的小尺寸,可快速模擬0-3000rpm轉速下的機器運行,進行振動測量和分析主要技術參數通道數每模塊8通道,可選配16通道/模塊,通過以太網實現無限通道擴展連續采樣速率比較高5kHz/通道橋路方式支持全橋、半橋、三線制1/4橋適用應變計電阻值(1)三線制1/4橋電阻范圍:120Ω、350Ω程控切換;(2)半橋、全橋電阻范圍:60Ω~20000Ω任意設定;供橋電壓2VDC、5VDC、10VDC分檔切換應變量程±50000με,**小分辨率0.5με應變示值誤差±(0.2%red±2με)電壓量程電壓量程(8CH):滿度值±10000mV、±5000mV、±500mV、±50mV;電壓量程(16CH):滿度值±5000mV、±500mV、±50mV;(±10000mV選配降壓器)電壓示值誤差±0.2%F.S介紹增速齒輪箱故障機理研究模擬實驗臺的組成部分。電機故障機理研究模擬實驗臺哪家好
怎樣保證故障機理研究模擬實驗臺的實驗數據的準確性和可靠性?租賃故障機理研究模擬實驗臺企業
在機械設備運行過程中,零部件的運動產生振動和沖擊,包含著豐富的設備健康運行狀態信息[1-2]。振動沖擊往往是由零部件之間的碰撞敲擊產生,其幅值大小、出現位置表現著設備的健康狀態。在航空、船舶、石油化工等領域的機械設備中,包括航空發動機、內燃機、齒輪箱、往復壓縮機、泵等,沖擊振動是常見的故障模式[3-5]。因此,監測機械振動信號中的沖擊成分可有效反映機械部件運行的健康狀態,對設備進行故障診斷具有重要的意義。振動信號沖擊成分呈現多頻段分布,并伴隨著噪聲干擾,不同頻率成分的沖擊在時域混疊等問題[8-9]。以上情況,導致了復雜機械設備的實際振動監測信號的分析難度,造成了早期故障沖擊特征難以捕捉等問題。更進一步地,其中一些往復機械(柴油機、往復壓縮機、往復泵等)的振動信號的沖擊成分在時域分布上呈現周期性間隔特點,與曲軸特定轉角對應[10-12],單從回轉設備的頻域分析方法在此并不適應。由于實際振動信號的頻域復雜性和時域多沖擊分布特點,因此需要對采集的振動沖擊信號進行頻域分解和時域沖擊的提取,為后續特征提取和故障診斷奠定基礎。租賃故障機理研究模擬實驗臺企業
提出一種往復式壓縮機示功圖處理方法以及基于卷積神經網絡機器學習的智能往復式壓縮機故障診斷流程。使用等參元歸一化方式處理示功圖,處理后的樣本經卷積神經網絡分類識別,可實現往復式壓縮機自學習、智能故障診斷。使用等參元歸一化方法,可無需考慮工藝變化、環境改變等造成示功圖圖形改變的因素,這樣示功圖的處理方式...
福建俄羅斯激光對中儀
2025-07-11湖南設備激光對中儀
2025-07-11瑞典激光對中儀器寫論文
2025-07-11專業級激光對中儀器保養
2025-07-11在線激光對中儀定制
2025-07-11無錫激光對中儀怎么用
2025-07-11國產激光對中儀器定做
2025-07-11軸激光對中儀操作
2025-07-11吉林旋轉機械激光對中儀
2025-07-11