RNaseH-(RNaseH缺乏)通常是指在某些逆轉錄酶中通過突變消除了RNaseH活性的酶。這種酶在合成cDNA鏈時不會降解RNA模板,因此可以用于生成更高產量的全長cDNA,尤其是在使用較長的RNA模板時。RNaseH-的應用主要包括:1.**全長cDNA合成**:由于RNaseH-不會在逆轉錄過程中降解RNA模板,因此可以合成更長的cDNA片段。2.**提高cDNA產量**:在某些情況下,使用RNaseH-可以提高cDNA的產量,特別是當RNA模板質量較高時。3.**避免RNA降解**:在逆轉錄過程中,RNaseH-有助于保護RNA模板不被降解,這對于后續的分子生物學實驗非常重要。4.**特定基因表達分析**:RNaseH-可用于合成特定基因的cDNA,進而進行基因表達分析。5.**RNA病毒研究**:在研究RNA病毒時,RNaseH-可用于合成病毒RNA的cDNA,以便進一步研究病毒的基因組。6.**基因克隆和功能研究**:合成的全長cDNA可以用于克隆和研究基因的功能。7.**提高qPCR和RT-qPCR的效率**:使用RNaseH-合成的cDNA作為模板,可以提高定量PCR的效率和準確性。8.**RNA干擾和基因沉默研究**:RNaseH-有助于合成siRNA或shRNA,進而研究基因沉默的效果。
T4UvsX重組酶是一種來源于T4噬菌體的酶,它是RecA/Rad51家族的同源體。這種重組酶在雙鏈DNA斷裂的修復和復制叉重新啟動的過程中起到重要作用。T4UvsX重組酶可以通過與其他DNA結合蛋白或輔助因子一起與單鏈DNA形成核酸蛋白復合物,并通過尋找與靶標DNA的互補區域進行雜交,以完成鏈置換反應。此外,T4UvsX重組酶在生產時由大腸桿菌表達和純化。T4UvsX重組酶的產生過程涉及到基因工程和蛋白質表達的常規技術。首先,T4噬菌體的基因序列被識別并克隆到適合的表達載體中,然后這個載體被轉化到大腸桿菌宿主細胞中。在宿主細胞內,T4UvsX基因被轉錄和翻譯,產生重組酶蛋白。隨后,通過一系列步驟包括細胞培養、蛋白質表達、細胞裂解、蛋白質純化等,獲得所需的T4UvsX重組酶。這一過程通常在生物技術實驗室中進行,并且需要精確的分子生物學操作和蛋白質工程知識。
磁珠法質粒小量抽提試劑盒通過一系列優化的步驟來確保從細菌細胞中提取高質量和高純度的質粒DNA。以下是這一過程的一般步驟:1.**細胞培養**:-首先,將含有質粒的大腸桿菌在適宜的培養基中培養至適宜密度(通常是OD600約0.6-1.2)。2.**裂解細胞**:-使用試劑盒提供的裂解液(含有SDS和可能的其他裂解成分)破壞細菌細胞壁和膜,釋放出細胞內容物。3.**吸附磁珠**:-將磁珠加入裂解后的混合物中,磁珠表面修飾有能夠特異性結合核酸的配體,使得質粒DNA吸附于磁珠表面。4.**磁分離**:-利用磁力架將吸附有質粒DNA的磁珠從溶液中分離出來,去除未結合的蛋白質和其他細胞碎片。5.**洗滌雜質**:-經過幾次洗滌步驟,使用試劑盒提供的洗滌液去除吸附在磁珠表面的蛋白質、RNA和其他雜質。6.**去除洗滌液**:-磁分離后,小心地移除洗滌液,避免磁珠干燥或吸入磁珠,以確保純度。7.**洗脫質粒**:-使用試劑盒提供的洗脫液(通常是低鹽或高pH的緩沖液)將質粒DNA從磁珠上洗脫下來。8.**收集質粒**:-洗脫后的質粒DNA通常在室溫或4°C下保存,避免多次凍融,以維持DNA的完整性。
轉座酶是一類能夠催化轉座子(一種可移動的DNA序列)在基因組中從一個位置移動到另一個位置的酶。轉座子可以在DNA分子上“跳躍”,在新的位置上插入自己的拷貝,而原始位置的轉座子則可能被切除或保留。轉座酶的作用是轉座過程中的關鍵因素,它們可以被分為兩類:1.**復制型轉座酶**:在復制型轉座過程中,轉座子首先被復制,然后復制的拷貝到新的基因組位置,原始的轉座子留在原位。這種機制通常涉及到“復制-粘貼”的過程。2.**剪切型轉座酶**:在剪切型轉座過程中,轉座子從原始位置被切除,然后到新的基因組位置。這涉及到“剪切-粘貼”的過程。轉座酶的活性和轉座子的移動可以對基因組的結構和功能產生重要影響,包括:-**基因突變**:轉座子的插入可能破壞基因的正常功能,導致突變。-**基因組多樣性**:轉座活動增加了基因組的多樣性,有助于物種適應環境變化。-**基因調控**:轉座子的插入可能激起或抑制某些基因的表達。-**新基因產生**:在某些情況下,轉座子的移動可以導致新基因的產生。
Benzonase核酸酶是一種來自粘質沙雷氏菌(Serratiamarcescens)的非特異性核酸內切酶,它能夠高效降解所有形式的DNA和RNA,包括單鏈、雙鏈、線性和環狀核酸,將其消化成2至5個堿基長度的5'-單磷酸寡核苷酸。這種酶在生物技術領域有著廣泛的應用,包括:1.**降低粘度**:在蛋白樣品制備過程中,Benzonase核酸酶可以降低由于核酸引起的高粘度,從而便于樣品處理和提高蛋白產量。2.**去除核酸污染**:在蛋白提取、疫苗生產、生物制藥等領域,Benzonase核酸酶用于去除樣品中的核酸污染,確保產品質量。3.**提高蛋白質分離效果**:在雙向SDS-PAGE蛋白樣品制備中,Benzonase核酸酶可以去除帶負電荷的核酸,改善蛋白質的分離效果,增強2-DE分辨率。4.**促進蛋白質復性**:在高質量包涵體制備中,Benzonase核酸酶有助于降解核酸,從而促進不可溶性蛋白的復性。5.**穩定性和兼容性**:Benzonase核酸酶在多種條件下穩定,包括高濃度的尿素,且與蛋白酶抑制劑兼容,但需注意EDTA對其活性的抑制作用。此外,Benzonase核酸酶的活性單位定義為在30分鐘內使△A260值降低1.0的酶量,相當于完全消化37μgDNA。FnCas12a產品不含DNA內切酶和外切酶,也不含RNA酶,保證了實驗的準確性和重復性。Recombinant Human MIP-4/CCL18
C5a通過與髓源性抑制細胞 (MDSCs) 膜上的受體C5aR1結合,招募MDSCs至炎癥局部,抑制CD8+ T細胞增殖與功能。Recombinant Human LAIR1/CD305 Protein,His-Avi Tag
在5'DNA腺苷酰化試劑盒中,"5'"表示DNA分子的5'端,即DNA鏈的起始端。DNA和RNA分子由核苷酸單元組成,每個核苷酸由一個糖分子、一個磷酸基團和一個含氮堿基組成。在DNA中,糖分子是脫氧核糖。這些核苷酸通過磷酸二酯鍵連接在一起形成多核苷酸鏈。DNA鏈有兩個端點,分別是5'端和3'端,這兩個端點是根據糖分子上碳原子的編號來命名的:-**5'端**(5'-phosphategroup):這個端點的磷酸基團連接在脫氧核糖的第五個碳原子上。-**3'端**(3'-hydroxylgroup):這個端點的脫氧核糖上第三碳原子上有一個自由的羥基(-OH)。5'DNA腺苷酰化試劑盒的目的是將腺苷酸(AMP)加到DNA分子的5'端,形成5'-磷酸腺苷鍵。這種修飾對于某些分子生物學應用非常重要,例如在RNA干擾(RNAi)、高通量測序、連接反應或PCR檢測中制備特定的接頭或適配體。在5'DNA腺苷酰化試劑盒中,通常包含一種酶(如腺苷酸化酶或某些RNA連接酶),它可以催化將ATP中的AMP部分轉移到DNA的5'端磷酸基團上,從而完成腺苷酰化過程。Recombinant Human LAIR1/CD305 Protein,His-Avi Tag
Probe qPCR Mix (2×, UDG Plus):高效防污染的探針法qPCR解決方案Probe qPCR Mix (2×, UDG Plus) 是一種為探針法實時熒光定量PCR(qPCR)設計的即用型預混液,結合了熱啟動Taq DNA聚合酶、優化的反應緩沖液、dUTP和UDG酶,能夠有效防止PCR產物污染,提高檢測的特異性和準確性。產品特點高特異性和靈敏度:采用抗體修飾的熱啟動Taq DNA聚合酶,結合優化的反應緩沖液,有效減少非特異性擴增,提高檢測靈敏度。防污染設計:預混液中包含UDG酶和dUTP,可在反應前降解含尿嘧啶的PCR產物,防止氣溶膠污染。多重檢測能力:支持多重qPCR反...